
Reference Point
IVolume 3, Number 2 TechfliCilI Resourcesfor DataCAD ® Spring, 19931

CONTENTS

Since careful control of these settings is important to
the success of the operation, it is critical that you
understand where you are located in Z space atany
moment. For this reason, it is highly recommended
that you keep the display of Z information 011 at all
times (SETTlNCS, SHOW Z).

With all four of the wall and door/window layers
turned on and a fifth,empty, layer active, you enter
the 3-D VlEWsmenu (Y). When you selectFRNTElEV
from the ELEVTION menu, a front elevation of the
draWing isdisplayed. Walls, windows/and thedoor
are all displayed in their correct orientation [it may
be necessary to invoke WINDOW!N (I), EXTENTS (Fl)
to display the full elevation].

A 3-D eXITusion of 2·0 elements (sometimes re
ferred toas2~0)comprisesthedisplayedelevation.
Since these elements are wire-frame in nature, hav·
ing no surface characteristics, hidden-line removal
on them will not produce an effective elevation
image. The simplest means of "capturing" the
elevation view is by using SAVEIMAG, restricting the
number of lines "captured" by using CUP CUBE.

With the frontelevation sti II displayed, exit to the3D
VIEWS menu and select CUP CUBE (S7). Then you
choose NEW CUBE (F2). The display changes to plan
view (ORTHO, in the parlance of the 3·0 Views
menu). You establish Z·M1N (F4) and Z-MAX (FS)
settings for the CUP CUBE describing a range to be
iru;luded in the CUP CUBE. In this example, values of
-l'-Q" and 17-0" are used. You respond to the

ronlinued on pgge 3

Guidelines for Graphics Card Puchasers 2

From the Editor 2
3-D Capabilities in DataCAD: An Overview

From Plan to Elevation 1
BlIilding a 3-D Model 4
Relldering with Velocity 8

DeAL Workshop 10

Secmui FloorGroulld Floor

From Plan to Elevation
Bycarefullycontrolli ng the structureofa plandraw
ing, viewing it in the 3-D portion of OataCAO, and
saving an image of the elevation view, you can
quickly construct an elevation drawing. Figure 1
illustratesground floor and second floorplandraw
ings of the exterior walls of a building:

Figure 1

This example shows the two plans, drawn in four
separate layers, "on top of" each other. Two layers
are used for the walls, one for each floor. The door
and windowsaredrawn in their own layers,one for
earn floor; the door and windows are cut into the
walls of the appropriate floors with the LYRSRCH
toggleofl. InconstTUctingtheground floor walls, the
Z BASE has been set to 0, Z HEIGHt to 8'-0".

Thedoor and windows of the ground floor plan are
drawn with Z BASE and Z HEIGHT settings (Z,z)atO
and 8'·0" and theirSilland HEAD HEICHTsettingsare
controlled in the Dcx:>RSWNC and WINIJCMIS menus.
Similarly, the second floor plan is constructed with
Z BASE set to 8'-0" and Z HEIGHT set to 16'-0". The
windows cut into the second floor walls are drawn
with Z settings left at 8'-0" and 16"...0".

3-D Capabilities in DataCAD: An Overview
DataCAD provides a powerful set ofJ..D tools that The SILL HEICHT and HEAD HEICHT settings in the
you can use for a variety of drawing tasks. In the WINOOWS menu are set to values relative to the ClIr
formofanoverview, thisartidedescribesthefunda- rentlyset Z BASE. Thus, when the Z BASE is set to 8'
mental 3-D capabilities of DataCAD. It assumes 0" and a window is drawn with a SILL HEIGHTof3'·
your general facility with 2-D drawing. Where 4"andaHEAoHEIGHTof6'-8",thewindowisdrawn
appropriate, it discusses menu selections in some wilhabsolute Z values of 11'-4" and 14'-8",
depth. Theartidedescribes the processbywhich an
elevationdrawing isgenerated £rama plandrawing
utilizing the 3-D (2) attributes of 2-D entities. It
describes basic 3-D entities and 3-D viewing con
trols. It illustTatesa process forcreatinga3·0 model
and some techniques for effident 3-D mooeling. It
explores modeling considerations for generating
hidden-line images and Velodty renderings. It
presentsa discussion ofsystem configura tion issues
for running Velocity and explores the use of the
Velocity macroand the Velocity rendering software.

Guidelines for Graphics Card Purchasers ""
Many DataCADu5ersMecunentlyconsideringthe driver and the DataCAD VESA driver in the High
purchase ofa new graphics card, either as a part of DOS memory area for optimum performance in
a new system or as an upgrade to an existing one. DataCAD. See Refemu:e Point, Summer, 1992 for a
11le wealth of new cards on the market is largely discussion of system optimization; the configura
driven by the proliferation of Microsoft Windows. tion detailed in thatartideutiliz.es the VESA drivers.
Many of you are faced with questions about these An artide in this issue shows a typical system
cards' compatibility with DataCAD. configuration (or Velocity, using VESA drivers.

In considering a specific card, you should inquire 1hepn:xess(orutilizingacardthatis8514Aoompat
aboutthesoftwaredriverssuppliedwiththecan:1. If ible is more straightforward. This type of card
the manufacturer provides a driver for DataCAD, should be register level compatible with 8514 emula
then the card should work properly. l(they do 'lOt tion and can be driven directly with the Cadkey
supplyaDataCADdriver,youshouldinquireabout supplied driver. ATC8514.EXE, which should be
VESA emulation or 8514A compatibility. You loaded to the High DOS memory area.

canconfigureDataCADtoeitherofthesestandards. Cadk.ey technical support personnel are familiar

An article in the Spring. 1992 issue of RJference Point with a number of the new graphics cards 00 the
details the process of ronfiguring a system for use market and the means by which you can ronfigure
witha YfSA-eompliantgraphicscard. Basically, the them for DataCAD. Aninquiry tothem might prove
card must first be put into VESA mode through the helpful in the process of selecting an appropriate
useofa vendor-supplied sofn...aredriver. You then graphicscard. Further, in purchasingacard thatyou
configure DataCAD with its own YfSA driver: anticipateronfiguringwitheitheroftheseemulation
either YfSA256.EXE or VESAI6.EXE. You should modes, your purdlase should be made conditional
place both the vendor-supplied VESA emulation upon successful configuration for DataCAD.

s,m.t, JUJ
",..,

From the Editor
Accord ing to Cadkey, the recent price promotion for
DataCAD (detailed in the flyer enclosed with the
Winter, 1993 issue of Refererlle Poillt) has met with
great success. Consequently, at the request ofdeal
ers, the promotion has been extended through the
end of] une. Manyexistingusershave renewed their
maintenance agreements, and DataCAD has been
adopted at many new sites. Because DeAL and
Velodtyare now bundled witl1 DataCAD, Referalle
Poi"t will be covering their use in more depth.

A new column on OCAL, written by Bill D'Amico,
begins in this issue. Long-time DataCAD users will
be familiar with Bill'scontributions to the DataCAD
community. He works for a DalaCAD dealer,
Corporate Network Systems of Yarmouth, Maine,
and is the author ofa number ofcommercial OCAL
macros: DC Sprint, Blocker, and TouchUp. Under
the guise of "Dr. DataCAD," he was a regular
contributor to Windowlflofl DataCAD. He brings to
these pages a wealth of experience with DataCAD,
its users, and OCAL programming.

BiJI's column will provide to those of you who are
unfamiliar with software programming the infor·
mation necessary to begin the process of creating
OCAL macros. The intent is to help you to under
stand theconceptsand procedures involved in this
process and to assist you in understanding the
documentation provided with the product.

TIle Cadkey bulletin board now has a new section
for OCAL. Source code and compiled macros that
Bill discusses in his column will be posted there,
available for downloading. Cadkey will provide
source code for routines, as well. Also, it is hoped
that other DeAL programmers might share code
and/or macros through the bulletin board.

On the subject of electronic communication, the
recent provision of modems and CompuServe mail
addresses for DataCAD personnel at Cadkey has
prompted me tofinallyjoin thatservice. Theprocess
of initiatinga membership is extremely simple (con
tact CompuServe at 800-848-8199). The services
provided are wide ranging. My CompuServe mail
address and those for various Cadkey folks are
provided on page 12 of this issue.

I can recommend very highly the software "front·
end" packages that CompuServe has developed.
CLM(CompuServelnfonnationManager)isamenu
driven DOS program that facilitates the process of
logging on toand navigating through CompuServe
services. A Windows version, WIN ClM, has re
cently been released; you get thesame basic tools as
the DOS version, but the GUI interface makes it much
easier to use. Depending upon your preference for
DOS or Windows, either one of these is well worth
the $49.95 price, which includes a $25 credit to the
new member's acrount.

Figure 4

DDDDD
DD DD

rontinuedfrom pgge 1

message line prornptsby identifying two points that
define the diagonal on the CUP CuBE. Toggle on
CUPON (PI). When the screen refreshes, only those
entities contained within the defined Clip Cube are
drawn;see Figure2. Note thattheextentsoftheClip
Cubeare displayed indashed lines. A portion of the
ground floor door and the second floor window
above it are se€n.

rL:J-----!--~--I------~__ _ __ _ __ J

Figure 2

ExittheCupCuBEmenu. You return to the 3D VIEWS
menu in FRONT ELEVATION view, with only those
entities contained within the CLIP CUBE displayed.
You selectSAVEIMAC (55) to"capture" the elevation.
It is saved to the active layer by choosing AcrvLYR
(Fl) as the destination (remember that a fifth,empty,
layer is active). Figure3 illustrates the saved image
in ORTHO (plan) view, with only that layer on.

- ~

- -

= =

f- f-
- -
= e==

- '---

Figure 3

Notethe varying window sill heightson both floors;
this was accomplished at the point of creating the
windows, in plan, bychanging the SILLHcTsetting in
WU\'OOWS. The HEADHcT setting for all windows
and the door was left at 6'-8". IDENTIFY (I) and
MEASURES(Alt+X)operationsperformedonthesaved
image indicate that the elevation is dimensionally
accurate and that all entities have been drawn with
a Z BASE of 0 and a Z HEICHTofO.

Note also the effect of having created the plan with
CUTOlJT(F4in both OcoRSWNcandWINOOws)tumed
on. Ateach cutoutforadoororwindow, thewall has
been cut from top to bottom. 13ecauseoftheway that
SAVElMAC works, at everyoccurrenceofa line in this
image, there are, in fact, at least two lines, one
overlaid on top ofanother. The process ofcleaning
this up could be time consuming and tedious. It is
far simpler to trace (with LYRSNAP 011), in another
layer, a "clean" version of this image.

Figure 4 illustrates the
"clean" version of theel
evation base generated
from the saved image.
The amount of informa
tion traced from the
SAVEIMAC layerisafunc
tion of the means by
which it will be later detailed. In the example
illustrated, the window sills have not been traced;
only the "roughopening" has been copied. Because
this elevation base will be used in later steps involv
ing the use of 3-D entities, it has been drawn with
lines having a Z BASE of 0 and a Z HEICHT of O.

One of the more tedious operations in the develop
ment ofan elevation drawing is the construction of
accurate windows, particularly double-hung win
dows with divided lites. John Hitch has written a
DCAL macro, DHW40, that provides parametric
controls to fadlitate this process.

Figure 5

Figure 5 illustrates the elevation base drawing after
you haveadded2-Dwindowstoit by using DHW40.
Each window has been drawn with ~ifferingmenu
settings to illustrate the range of settings available.
Again, these windows have been drawn on their
own layer to maintain the integrity of the elevation
base for later 3·D modeling procedures.

To use the macro, you define X and Y sash dimen
sions, selecteither Casementor Double Hungas the
window type, and specify the number of lites in
terms of Xand Ydivisions(options change depend~
ing upon window type selected). You can set
dimensions for: casing, backband,sill, top rail, meet
ingrail (double hungonly),bottomrail. You can set
the color in which the window is drawn. You can
specify SubsilJ and Lintel types (including "none")
and set their sizes. Optionally, you can place de
scri ptivetext (not shown) with each window; menus
allow you to control text size, color and aspect.

DHW40

John Hitch
Hitch & Associates
3309 Childers 51.

Raleigh, NC 27612
(919) 782-4373

Spring, 199J

pgge3

DDD
•.'
- T'

DOD,0
== .tQ.

~,~ r* f-2'-o'
------------ --- -----

the first floorwill beabovegrade,you want toextend
the walls of the model below grade, which will be
modeled separately in a later step.

Another thing that you may want to doat this point
is to make careful note of the critical dimensions of
the window penetrations that you will be creating.

DDDDD

Figure 7

Figure 7 illustrates the dimensions which will be
needed for later steps; it corresponds to the 2 infor
mation that you will set in the AEC~odelmacro
when creating windows and doors.

Next, in a new,empty layer, create the wall. First set
(2,z) theZBAS£to-l'-Q"and theZHElCHTtoO. Then,
enter the3-D ENmY menu and selectSLAB. Thetype
of slab that you draw will be rectangular, drawn
from Z -1'-0" to Z O. Select R.EcrNCLE (1'3) from the
SLAB menu and BAS/Her (F3) from the next menu.

,- --, e Make sure that the currently set Z Base is -1'-0" and
the Z Height is O.

At the prompt:"Enter first pointofrectangular slab,"
snap (LYRsnap should be (m) to a comer pointon the
2-D base drawing (point C in Figure 6). At the
prompt. "Enter second point of rectangular slab,"
snapto pointE, Figure6. Repeatthe processforeach
of the windows and the door; snapping to points F
and G for one of the windows, for instance.

Next, the window slabsand the doorslabneed tobe
.t-------L-L-------ja processed as VOIDS in the wall slab. Todoso, in the

SLAB menu, select Voros(FS). At the prompt: "Select
C 0 master polygon or slab to process voids," pick the

Figure 6
wall slab bydickingon it with the left mouse button.

Figure 6 shows the modified elevation base draw- The slab will bedisplayed in light greydashed lines.
ing. You create a new line (C-D) by copying the With AREJ. (1'3) toggled as the selection method, at
original base line (A-B) some distance (2'-Q" in this the prompts: "Select firstcomerofarea to make into
example) and then trim the vertical end lines to this a void"and "Select second pointofarea to make into
new line. You determine thedistance tocopybased a void," draw an area box around the window and
on the grade condition around the building which door slabs. They will all be displayed in light grey,
you are modeling. Since very few buildings sit on dashed lines. Make sure that AooVOID (F8) is
absolutely flat sites, and even then, the elevation of toggled on and exit the menu. An 1oENTlF{ per-

Building a 3-D Model
Just as making an architectural model is different
from drawing on paper, the construction of a 3-D
model in DataCAD is a different process than that
for drawing in 2-D. Though DataCAD's 2-Dentities
have3-D properties (i.e. a Zcomponent), they donot
have plnnar attributes. Therefore, the usefulness of
2-D entities in 3-D modeling is limited. Ultimately,
the "output" from a 3-D model is either an image
generated by the hidden·1ine processor a rendered
Velocity image. While the hidden-line routine can
process 2-D entities, its results are far more satisfac·
tory when it operates on true 3-D entities. Velocity
requires 3-D entities for its operation.

T
A wide range oftools for the creation ofa 3-D model
are available in the 3-D portion of DataCAD. They
ind ude threebasic types: 3-Dview controls, toolsfor
creating 3-D entities, and 3-D editing tools. All of
theseare well documented in the DataCAD manual
and willnotbedwelt upon here. Rather, this articLe
presents a simple method for the creation of a 3-D
model. It demonstrates the use of three basic 3·0
entity types: 3-D lines, polygons, and slabs. The
method also illustrates the use of some basic 3-D
view controlsand someofthemorecommonly used
3-D editing commands.

To begin modeling in 3-0, you use the prevtDusly
drawn elevation base (Figure 4) as a guide for
creatinga3-Dslab,which will form thewall. Before
creating the slab, though, you should make a couple
of changes to the 2-D base drawing.

Why not use Vertical Slabs for the wall and the
voids, setting the Z Baseand Z Heightasappropria te
and avoid the necessity of rotating horizontal slabs
into place? Thereare two reasons: First, the horizon
tal technique allows you to trace from a developed
elevation created in 2-D. 2-D editing tools (notably
CLEANUP) provide to you theability tod ra w complex
elements, Like the exact location of a roof pitch, and
to accurately place window penetrations. You may
first work out complex elevations in 2-D and then
trace that work in another layer with 3-D entities.

Second, accurate processing of voids is dependent
upon the coordination ofooid slabs with the master
slab. DataCAO's rwe is that void and master slabs
must be coplanar (in a horizontal configuration, all
ofthe slabs must have the sa me Z Baseand Z Height)
and all of the slabs musthave tlleirreferenceftu:es in
tire smIle pial/e. When draWing a wall with voids
using vertical slabs, it can prove to be difficult to
coordinate these two important factors. Especially
if you are new t03-0 modeling in Data
CAD, it is recommended that you
use the methods described
above as you develop t>.
;~~; modehog ~ e9 ~ ~

~

\\ Q, -":;gu,. 9, ,, -', -'
\...... Figure 9 illustrates the

model after the other three
waJls, with their window voids,

havebeencreated. Notethatyoudraw theend walls
(at thegable ends) with horizontal slabs, rather than
with rectangular slabs so that they slope with the
roofpitch (a slab may becomprised ofas many as36
vertices). in all other respects, you draw thistypeof
wall slab in the same manner as described above.

Figure 8

The Right Hand Rule govems3-0 ROTATE (and 2
D ROTATE, as well). This isan important concept to
understand. Imagine that you are holding a pencil
in the palm of your right hand with your fingers
wrapped around it. The point of the pencil isaimed
down, toward theheel ofyourhandand yourthumb
is aimed up the shaft, toward the eraser. With the
pointof the pencil at the "center of rotation" and the
axis of the pencil tilted to the"axisofrotation," rotate

r- thepennl by moving your thumb toward theknuck
les of your hand. This is rotation in a positive
direction for whatever axis you are representing. In
the example illustrated here, you can see that the
rotation selected is +900 along the X axis.

formed on the slab will indicate that thereisoneslab
containing ten voids.

Next, you need todraw a 3-D LineatZ Don the face
ofthe slab, ind icatingon the outsideofthe model the
first floor grade elevation. Todo so, you enter the3
o Line menu (Fl) from 3-D ENTIn', toggle Z-HGHT
(F4) to indicate that both ends of the line will be
located at the currently setZ Height (0). Draw the3
o Line by snapping to points on the 2-D base
drawing(A and B, Figure 6). For purposesofclarity
in later steps, you should make the color of this line
different from the color of the slabora different Ijne
type; it is illustrated in this exampleas a dashed line.

Next, Rotate the slab intoposition, using the ROTATE

menu in the 3-D section of OataCAO. In this
example, the slab is rotated 9()0 about the X axis to
bring it into position. Figure 8 illustrates this; it
shows a hidden-line image of the slab, with voids,
rotated up from the2-0basedrawing(atZO,0). The
center point about which the rotation is performed
is selected by snapping to either end
ofthe3-0"base" line. 3-D Rotate
defaults toaZ location ofO,
which is appropriate
for this example.

sr';"I, jg93
pgge5

Using AEC_Model:
Next, you use the
AEC_Model macro to
construct window and
door elements in the3-D
model. As in earlier
steps, you will find that
it is generally easier to
work in plan (ORTHo)
view to create elements
in the model and to then
verify the results by
viewing in a PARALLEL,

OBUQUE, or PERSI'ECTIVE

view. To begin, work
with a new, empty layer
as the active one. Tum

Figure 12 on the layer containing
the wall slab to which

you will beaddingdoorsorwindowsand, ifyou are
not already there, set your 3-D View to OKrno. In
both the DoorandWindowsectionsofAEC_Model,
the first thing that you tell the macro is whether you
will be creating entities in PlAN or ElEVATION view;
you should select PlAN.

TIle menu settings for the macro and the elements
that theycontroJare well documented in the manual.
Working with P1..ANentry,you will need toknQ\\l the
Sill and HEAD HFJeHT for each door and window
that you construct; this is why you earlier noted
thesedimensions,asillustrated in Figure7. With this
information at hand, you need only snap to three
points at the appropriate void to indicate the limits
of the door or window, and the macro creates it.

You might find that an efficient means of using the
macro is toutilize the FoAAt option toset parameters,
then place a door or window, and check the results
by viewing in a 3-D projection. You can erase the
last-placed construction «), correct the parameters
selected by eitherentering the appropriate menu or
byopeningthe FoRM agajn,and re-place lhedooror
window. Once you have established settings that
you will utilizeover again, you can save them to file
so that they can be loaded to the macro easily.

Use RoofIt to construct a roof for the model. The
use of this macro is detailed in the Summer, 1992
issue of Reference Point.

Grade elemenls around the model can be con·
struded ina varietyof ways. Mostsimply,lNCUNID
POlYCONS provide a means of creating pathways
and sloping grade conditions at the edge of the
building. They serve to mask the portion of the
model that extends below grade.

Figurel1showsthecor
ner of the model after
the move has been per
formed and a hidden
line has been run on it.
Note that the slab end
lines at the comerdo fwi
overlayoneanotherand
will plotatsome (small)
distance away f'romone
another. Thismayserve
a positive purpose, as
the comer indication is

Figure 11 heavied up a bit.

Hatchinga3-Dsurface may beaccomplished with
a little bit of work. Starting with an empty layer
active in ORTHO (plan)view, you tum on the 2-D base
elevation layer. Using itasa base, in the(2-D) HATCH

menu you createhatdllinesin theactivelayer, with
Z BASE and Z HEiCHT set to O. You use 2-D editing
controls to adjust the hatching until the elevation is
correctly hatched.

Then, with only the hatch lines layer turned on, you
enter the 3-D portion of DataCAD and select Ex
PLODE (F9) from the initial3-D menu. Makesure that
the ToLINES (F8) option is the one toggled on, and
selectall of thehatch lines. All ofthehatching is now
converted to 3-D lines. You can then rotate the
hatdling into position about the appropriate axis
using lhesamecenter point as you used torolate its
associated wall slab. Figure 12 illustrates the result
ing "hatched" slab with voids.

Note that TouchUp, a third-party macro, incorpo
rates parametric tools that perform a similar func
tion;seetheSummer, 1992 issue for a more complete
description of the use of this macro.

Figure 9 also illustrates a problem that commonly
occurs with 3-D models; because the wall slabs
overlap at the comers, the hidden-line process has
drawn lines from the thickness of the slabs on the
face of the intersecting slabs. Cleaning these up can
be tedious. There isa way to avoid the problem, at
the cost of a minor inaccuracy in the model.

Once you get the model to the point illustrated in
Figure 9 (Le. all of the wall slabs are properly
constructed), move each of the slabs (and the 3-D
Lines associated with each of them) 1/32" away
from the center of the model as illustrated in Figure
10. Vou use 1/32" as it is the smallest distance that
you may specify in DataCAD. In a rectangular
model, the footprint hasgro"", 1/16" in the Xand Y
directions as a resu It.Figure 10

TouchUp

Bill D'Amico
Corporate Networic

Systems
P.O. Box 965

30A Ale. 1 Suite 1
Yarmouth, ME 0409E

(207) 846-0772

Figure 13

Figures 13 and 14 illustrate perspective views of the
model constructed in the previous steps.

3-D Views are an important component in the
processofcreatinga3-o model. You should experi
ment with the controls that are available and read
thesectionsin the manual that cover them. Arouple
of important notes:

While the "globe" that is displayed when PARAlLEL
is selected can be very useful in establishing a view
for checking the accuracy of modelled elements, it
distorts the heightof the model (ELEVAnON viewsare
a sub-set of PARALLEL which do not distort the Z
component, however). You should use OBUQUE
views to generate axonometrics ofyour model, as Z
values remain "true."

The SAVE VIEW function accesses the 3-D GoToVIEW
function, which is similar to the 2-D GoToVIEW
menu.ltcansaveupto999views,eachofwhkncan
havea (different)CupCuuEassociated with it. Saved
3-oviewsare useful in the processofconstructing a
model and in processing hidden-lines; they are
essential to the process of rendering with Velocity.

The CUP CuBE can be used to limit the amount of
information displayed to the screen at any given
time. It is useful for limiting the amount of visual
dutter that you have to deal with while modeling.

The HIDE function, however, does not support CUP
CUBE. The only imaging function that supports it is
SAvIMAC, as described earlier. Two importantnotes
about HIDE: Before running a HIDE, make sure that
SAvlMAC (F3) is turned 011, There is nothing worse
than tying up your computer foran extended period

Figure 14

of time while it processes an image, only to find that
you cannot save that work. Second, toggle OIl

CROPlMAc (S2)anytimethat linesextend beyond the
drawing window in a perspective view. When
CROf'lMAc isoff, you may be left with lots ofl ines that
need to be erased or bimmed in the final image.

Use AutoHide in ViewMaster to batch processa
series of hidden-line images overnight. You can
select the saved 3-D VIEWS that you wish to process
and save the images to layers within the active
drawingfileortoextemal layer flies. When you save
to layer files, make sure that when you specify the
PATH to which they are sent, you includea backslash
at the end of the path name: C:\MTEC\LYR\ If the
path name does not include the final backslash, the
layer files written by the AuroHIDE process will
overwrite one another, and, in the end, you will be
left with only the last one processed.

Manage the drawing file c.uefully. From the
material presented here, you can see that 3·0 mod
eling involves the construction of many discreet
components. You should organize these compo
nents in separate layers,grouped byeach £areof the
model. In the example illustrated here, each £aceof
thebui Iding has separate layers for: the wa11 slab, the
window and door assemblies, and the hatching. A
(thirteenth) layer contains the roof and a separate
(fourteenth) one is used for the site elements.

Because Hidden-line processing time and Velocity
rendering time are largely a function of the total
number of entities to be processed, you should be
able to tum off layers containing elements that are
not visible in the view to be processed.

Sp,i~t, 1993

PII~7

Sprint, 1993

PageS

Rendering with Velocity
When you produce a Velocity rendering, there are
three basic steps that you have to go through:

• constructing a model in DataCAD
• translating the data that describes the model

and its associated views to a (onnat that
Velocity can read

• processing that data in Velocity

Thecomponentsofthe model on which Velocity can
operate are 3-D entities; it will not recognize 2-D
entities. You build a model for Velocity rendering in
the manner described inearliersectionso£thisissue.

VELOCI1Y.DCX,a DCAL macro normally instaUed to
thee:\ MTEC\DCXdirectory, is used toaccomplish the
conversion. You access itby selecting VELocnY from
theMACRQ;menu. You receive a prompt fora name
for thefile tobegenerated,and you havea NEWPATH
option. Normally, the file will be written to
c:\ VELOCrTY\ORN, a subdirectory that is created by
the INSTALL routine (or Velocity. While the macro is
running, a message appears: 'Writing rendering file
c:\ VELOCm' \ DRN\FILENAME.DRN."

Note that the macro writes to the .DRN fileollly t1lOse
layers that are tunted 011 at the point of executing the
macro. It writes to the file all 3-D GoToVIEW saved
views. However, Velocity does not support layer
switching by the views; for views of the model that
require differentcombinationsof layers to be turned
on, you must create separate .DRN files.

After running the macro, exit DataCAD and enter
Velocity. For optimal performance in Velocity, you
should cold bootyourrompu ter in a systemconfigu
ration different from the one used for DataCAD.

Configuringfor Velocity
Artides in the Winter and Summer, 1992 issues of
Reference Point discuss system requirements forData·
CAD. You should refer to them for a detailed
examination of how DataCADworksand how you
should configure your system to maximize its per
formance. Similarly, Velocity has specialized re
quirements for its running. You need to create
versions of Co.'JFlG.SYS and AlITOEXEC.BAT that are
partirular to running Velocity. The following are
typical versions of CONFIC.SYS and AUTOEXEC.BAT for
Velocity using MS DOS 5.0 drivers:

Config.sys
DEVICE=C:\DOS\HIMEM.SYS
DOS=HIGH,UMB
DEVICE=C:\DOS\EMMJ86.EXE 6960 RAM
fILES=JO
BUFFERS=IS
STACKS=O,O

Autoexec.bat
PATH C:;C:\DOS;C:\COMFILES
PROMPT PG
LH C:\STAR\UTIL\VMODE.COM VESA
LH C:\MTEODRVlVESA256.EXE
SET DC_GDT=VESA256,60,J,O,O, I
CD\VELOCITY
VELOCITY

The frrst line in CONFIC.SYS installs HIMEM.SYS, DOS
5.0'sextended memory manager. In the second line,
L05=HICH loodsa large portionofthe DOSoperating
systemtothehighDOSmemoryarea(between640k
and 1024k). The UMB statement enables access to
upper memory blocks. The third line installs
EMM386.EXE, which provides access to high DOS
memory and configures 6960k of exteru1ed memory
asexpanded memory. The ALES, BUfFERS,and STACKS
lines establish parameters for DOS's execution.

Thisexample is for a systemconfigured with 8 megs
of physical RAM. The number that you enteron the
EMM386.EXE line will depend upon the amount of
RAM installed on your system. Thegoal for Velocity
is to configure as much RAM as possible as
expanded memory. A RAM disk provides no
speed enhancement to Velocity. A disk cache would
improve some aspects of its performance, but it
would do so at the expense of the amount of ex
panded memory directly available to Velocity, a
much more critical factor in its overall performance.

In AUTOEXEC.BAT, note that the Velocity directory
(normally c:\ VELOCITY) is 1I0t included in the path
statement. As in the examples presented in the
DataCAD ronfiguration artides, the illustrated sys
tem usesa DiamondSpeedStargraphicscard, which
is driven in DataCAD and Velocity with Cadkey's
VESA driver: VESA256.EXE. As with the DataCAD
configuration, the card must first be put into VESA
mode; this is accomplished with Diamond'sdriver:
VMODE.COM; it is installed to the high DOS memory
area by including the LH (load high) statement.

Next Cadkey's VESA driver is installed, again to the
high DOS memory area. For Velocity, you can use
the same graphics driver that you use for DataCAD
if it is a 256 color driver. The SET IX_CDT= line
establishesa OOS environment variable that is read
by Velocity to set the display resolution. Thedocu
mentation for Velocity includesspecific instructions
for each of theavailablegraphicsdrivers. Consult it
for details about you own graphics card.

See the Fall, 199L issue of Reference Point for two
batch files that will help you save different versions
of CONAG.SYS and AUTOEXEC.BAT, swap them into the
root directory, and reboot your system.

Running Velocity
Once you have established a system configuration
for Velocity and can run the program, it is strongly
recommended that you follow the steps outlined in
the third section of the Velocity documentation, A
QuickTour. nus will provide to you an overview of
the mOOeling and rendering process. You will
quickly see that, of the steps involved in running
Velocity, most are straightforward. Two of the
steps, though, are relativelycomplex:assigning sur
faceattributesand spedfying the image formal. The
following sections djscuss them.

Assigning suiface attributes
In the main menu of Velocity, the ATTRlBUTE AssIGN
MENT option allows you to designate surface at
tributes (or entities in the model that you have
selected for rendering. Thewayyouaccomplish this
isbyassigning rendering attributeson a (03taCAD)
rolorbycolor basis. F2 (OrnoNS)opensa lower level
menu which allows you a number of controls over
the assignment process.

If, for instance, you wantaJl blueentities in ailiayers
to be rendered as MARBLE, you may assign this
attribute globally by selecting ALL LAYERS. If you
want blueentitieson one layer to be MARBLEand blue
entities on another layer to be TIN, you may enter
eadtofthe layersseparately and assign the values to
blueentities ineadtlayeraccording to you r require
ments. A OataCAD model can indudeas many as
1,coJ layers, and each layer can contain entities
drawn in as many as 15 colors. Hence, in Velocity
you can specify attributes for as many as 15,CXXl
discreet entity identifiers.

You quickly understand the need to manage the
original DataCAO model in a manner that facilitates
attribute aSSignment in Velocity. The moreconsis
tently that you use thesamecolor todraw entitiesof
the same ultimate material designation. the less
work you will have to do in Velocity. For example,
you might use Red for all slabs that will be rendered
as BRlaand limit the location of those slabs to only
a few layers. Then, finding them in Velocity and
assigning BRICK to Red entities will be simplified.
Just as coloraSSignment and the correlation ofcolor
to pen assignment is an important office standard
for 2-D production drawings, standard layerlcolor
assignment for frequently used materials in 3-D
models serves to facilitate their rendering.

Cadkey's 3-D macros, AEC_Model, RoofIt, and 3
DStairs, all provide the ability to set the color for
componentsoftheassembliesthattheymodel. They
alsoallow you to save settings to file. For frequently
used window types, you can establish a color stan-

dard for the window romponents, saving the set
tings to a file created from within AEC_Model.
Similarly, in Velocity, you can create a correspond
ing grouping ofattribute assignments, keyed to the
color standard, and save it to file. Once you have
saved this file, you can load it into Velocity to
establish theattribute~ignmentsfor the model on
which you are working. 1hisprovides toyou some
considerable time savings in the rendering process.

Image Jonnat
You can specify the output of Velocity's rendering
process to a number of file formats. Typically, you
can produce a .2RN file and display it at screen
resolutiotl. You candisplay any .2RN image toscreen
at the resolution that you Specified in thesetoc_cur=
line of A1JTOEXEC.BAT. For many pur')X)Se5, this is an
adequate means of presentation.

You may wish, however, to export a true color (16.7
million colors) version of the rendering to a file
format that can be read by a film recorder. You
should refer totheVelocitydocumentation for infor
mation about converting .6RN files to.SCD format.

Another means of processing Velocity output is to
exporta rendering file to "paint" software, in which
you can touch-up and enhance the rendered Veloc
ity image. Donot confuse this with the PAlNToption
under IMAcE RESOUJT1ON in the VrEW SPECIFlCATION
menu, in which you genera Ie a file that can be read
by the Hewlett-Packard PaintJet printer.

Most paint programs today run under MS Windows
and support a variety offile formats. Unfortunately,
.6RN files cannot be directly read by these packages.
To export a Velocity rendering to a paint package,
you need toconverta .6m file toa fonnat that can be
read by other software.

One way to do this is to use VIl.2TcA.EXE, a conver
sion utility provided with Velocity, toconverta .6RN
file to .TGA (Targa) format (see the manual pp. 5-19
to 5-21). Many paint packages can directly read
Targa files. Ifyour paint softwaredoes not read .TCA

files, do notdespair; therearea nu mberofshareware
conversion utilities thatcan convertgraphics files to
a number of commonly used formats.

Oleapware lists a couple of these utilities. It also
hasa numberofother items whichcanbe very useful
to you for 3-D modeling and rendering in Velocity.
3-D symbols for modeling in DataCAO are avail
able. Alternate Velodtybrick texture filesand "sky"
backgroundsare listed, as are a couple of3-D "color
wheels" which enhance the process of color selec
tion in Velocity.

UpgrwUd oasioNs of trw
<mt>m:ion jiJ6.1f! .tm1
Ilbk ore 1M GuIky BuIJe..
lin Botfrd. un:jJr:
VE12TGA.EXE
TGAlVELEXE

CHEAPWARE

Evan Shu
Shu Associates
10 Thacher SI.

Suite 114
Boston, MA 02113

(617) 367·9622

ill DeAL WORKSHOP

HELLO.DCS

PROGRAM hello;

BEGIN

wrterr('Hello World');

END hello.

EXAMPLE1.DCS

PROGRAM example1;

VAR
a : integer;
b : integer;
c : integer;
d: integer;
e: integer;
f: real;
g: real;
h: real;
5 : 5Iring(80);
m: boolean;

BEGIN

a:= 10;
b:= 3;
c := a + b:
d:=a-b;
e:::: a I b;
f:= 10.0;
g:= 3.0;
h:=flg;
s := 'Hello World';
m:= true;

END example1.

VariablesandVariableTypes:
The HEllO macro is so simple
thatitreallyshowsusnothingof
the elementary concepts of
DeAL: procedures, functions,
and variable types. Let us now
consider the small macro pro
gramcalled EXAMPl....El, which in·
traduces variable types.

The 'VAR' section of EXAMPtEl
declares the variables that the
program is going to use befOre
they are ever used. This is a
requirement of DeAL which
some other languages, notably
BASIC, do not have. Any and
all variables (or procedures or
functions) that will be used in a
program must have their 'type'
declared in a 'VAR' section be-
fore the program's 'BEGIN'
statement. Declaring a variable
means indicating what type of
information that variable will
hold. Variable names can be up
to 20 characters in length, and
must start with a letter (a·z).

Note: Upperand lowercase is ignored in all DeALstatements,
so you can use them interchangeably. I prefer to keep OCAL
statements that define program sections and program flow,
such as PROGRAM, IF, THEN, BEGIN, END, PROCEDURE,
etc.asaU capitals,as it makes programseasier to read. Program
sections may be separated by extra carriage returns or tabbed
indents to make those areas easier to find. OCAL ignores this
white space when the program is compiled.

process a source me through two steps to convert it to an
executable OCAL macro file (.ocx) for DataCAD to run. The
steps are: compiling and linking. Our first step, compiling
HEllO.OCS, is accomplished from the lX)5 command line by
typing: DCC HEllO OCC is the DeAL Compiler. If DeC
reports noerrors in thecompilestep, itcreates the fiJe: HEllO.DCO.

Then, HELLO.DCO is linked to form HELLO.OCX by typing:
DCl HEllO;

DeL is the DCAL linker. Note that you must indude the
semicolon. OCLcan Iink manysource files intoooe large macro
file, so the semicolon on the command line tells the linker that
this is the last ftle(and in this simple case the only one) that is
needed to build the DCX macro executable fiJe.

l(OCL does nol report any link errors, you now have a
HEllD.OCX file that can be run from DataCAD's MACROS menu.
Just copy HEllO.OCX to your 'macros' subdirectory (usually
C:\MTEC\OCX), run DataCAD, and pick HEllOfrom the MACROS

menu. 'Hello World' displays on the 'error line' in the prompt
area at the bottom of the screen.

This tiny OCAL program shows
the basic structure of a program
file. The program name is 'hello';
program execution begins at the
word 'BEGIN' and ends at the
word 'END'. The only actual pr<r
gram rode is the line 'wrterr('Hello
World');'. The wrterr statement

invokes the procedure 'wrterr', a built-in OCAL subpr'Ob'Tam
tha t takes the string tha tyou give it in the parenthesesand single
quota tion marks ('Hello World') and displays it on wha tOCA L
calls theeITOr line of the DataCAD display. Note: program code
lines must alunys DId in asemicolon

To write this program, open a new file with a text editor, type
in the four conunand lines listed, then save the file with a.OCS
(for DeAL Source) extension. Call it HEllO.OCS. You must

What is DCAL? DeAL (DataCAD Applications Lmguage)
isa programming language which allowsyou to write'macros'
which userscanaccessand run from within DataCAD. OCAL
macros can be programmed to perform nearly any drawing
manipulation task and greatly extend DataCAD'scapabilities.

Who Can Use DeAL? Programming DataCAD effectively
with DeAL requires both a thorough knowledgeofDataCAD
from the user'spointofview,as well asat leasta beginner's level
of programming principles usinga languagesuch as BASIC Of,

even better, PASCAL. OCAL programming is very PASCAL·
like in structure and flow, so elementary concepts such as
functions, procedures, and variable types need to be firmly
grasped in order to write even the simplest of DCAL macros.

It is frot the case that anyone who uses DataCAD - even a
DataCAD'guru' -canwrite DCALmacros. ItisaJsollot thecase
that any programmer can write good. easy-to-use OCAL
macros. OCALisa powerful tool; it isalsoa dangerous one. It
is powerful because it can directly read and write data in a
DataCAD drawing file; it isdangerous becausea OCAl macro
cancorruptaDataCA0 draw ing fi Ie if i t isnot carefully wri tten.
If I haven't scared you off yet, let's get to it...

Setting Up to Program in DCAl You mustdo a few things
before you can program in OCAL. First, you must install the
OCAl language progra ms themselves from the disks su pplied
by Cadkey. After that, I recommend that you indude the
directory into which you installed OCAl (usuallyC:\OCAL)
in the PATH statement ofAUTOEXEC.8AT. You can then write and
edit programs in any directory, and compile and link them by
just typing the DCAL compile and link commands. This way
you can more easily separate your work into a number of
directories. To program in DeAL, you must be able to edit a
lextfile. UseIX)SS.O'sEDIT,oruseyourwordprocessortoedit
and save your program source files as plain Ascn text files.

Our First Example: 'Hello World' Many language tutorial
manuals start by shOWing the simplest program anyone would
want to write, typically, the famous 'Hello World' example.
lhe following macro displays the words 'Hello World' on the
message line below DataCAD's drawing window:

[

The EXAMPLE} macro shows how variables are declared and
used in OCAL Variables a through e are declared as integers;
they can be assigned any value from .'32767 to 32767, but only
integer values (no decimal point). We assign to the variable a
thevalueofl0and to b thevalueof3 with thefirst two program
statements. 1llen we illustrate addition, multiplication, and
division of integers with the next three. ':==' is called the
assignment operator; itis used to assign the valueoftheexprer
sian to its right to the variable on its left. So c will take on the
value 13, and d will be 30.

The value of e, however, will be 3, not 3.3333333 as you would
expect if you cUd 10 / 3 on your calculator. This is becau.sewe
declared that e can only hold an integervalue, so 10 / 3 will only
yield the integer portion of the result, whim is, ofcourse,3. So
ewill havea vaJueof3. Doingthesamedivisionoperation using
the variables i, g.. and h will result in h's value being set to
3.33333333. Why? Because t,g..and h have beendedared as real
variables, which can have decimal points. i.e. fractional values.

Variable s is declared as a string variable that can be up to 80
characters long. We assign s equal to the value 'Hello World'.
Integers, rea!s, and strings are three of the more commonly
used types,asisa 1x>oIean', whim can have thevalueof'true'
or 'false'. The EXAMPU} macro assigns the value of tme to the
variable m. Chapter 8 * 'OCAL Built In Types' in the OCAL
manual goes into much more detail about these and other
variable types. You can also define your own types in a TYPE
section of your program, but let's not get ahead of ourselves.

DataCAD also has many variables already declared and built
into OCAL, all of whim have to do with various drawing
settings. These are outlined in Chapter 9 - 'OCAL Built In
Variables' in the OCAL manual. Astheuserworks in DataCAD
and changes variousd rawing settings, the values of these bu il t·
in variables are what are actually being changed.

Va riable typesa re oneofthecomerstonesofany programming
language. Familiarize yourself with DCAL's built in types by
looking over Chapter 8 in the OCAL manual, then the built in
variables inChapter9. Ifyou are very familiarwith DataCAD
as a user, you should recognize most or all of the built in
variables in Chapter 9.

Procedures and Functions: Sincegood programming prac*
tice dictates that any program of any significant size must be
brokendown intosubprograms that interact withoneanother,
a serious programming language provides the ability to do so.
OCAL has two mechanisms for creating sum subprograms·
calling them, like PASCAL. 'procedwes' and 'functions'.

A procedure is like a little program all itself. Uke the built in
OCAL 'wrtea' procedure used in the HEllO macro, you can
write procedures that can be called upon to perform a specific
task atKI/orproducea result based on data that is passed to it.
In the HEllO macro, we knew that we wanted to display a
message on the screen, atKI we knew what the message was.
Since wrterr knows how to do that, we simply 'called' the
wrterr procedure and gave it the message string that we
wanted the user to see. A function is identical toa procedure
except that functions retum aoolueofa particular type. Hence,
you must have a variable ready to receive the result of a
function, for example:

r:= 4.0;
s := sqrt(r);

Here rands are both variables of type real. The variable r is
assigned the value 4.0, then the square root function is asked to
operateon thevalueofr,and s isassigned that value:2.0. OCAL
hassomeSOObuilt-in procedures and functions whim will do
very sophisticated things (or you that you would otherwise
have to program yourself. We will get into writing our own
procedures and functions as we get further into OCAL; for
now,ournext example will justcall a few ofOCAL's many built
in procedures.

PROGRAM datetime;
Itinclude '/dcallinc_misc.inc'

VAR
year, month, day, hours: integer;
minutes, seconds, hundreths : integer;
tmp_str : str8;
outstr : str80;
am_or_pm : string(2);

BEGIN

readclock(year, month, day, hours, minutes, seconds, hundrelhs);
cvintst(month,outstr);
strcat(outstr,'f);
cvintst(daY,tmp_str);
strcat(outstr,tmp_str);
strcat(outstr,'f);
cvintst(year,tmp_str);
strcat(outst r,tmp_str);
strcat(outstr,' - ');

IF hours> 12 THEN
cvintst(hours-12,tmp_str);
am_ocpm :== 'PM';

ELSE
cvintst(hours,tmp_str);
am_ocpm :== 'AM';

END;

st rcat(outst r, tmp_str);
strcat(outstr,': ');
cvintst(minutes,tmp_str);

IF minutes < 10 THEN
strcat(outstr,'0');

END;

strcat(outstr,tmp_str);
strcat(outstr,am_or_pm);
wrterr(outstr);

END datetime.

DATETIME.DCS

'DataCAD, what time is it?' Have you ever been working
along in DataCAD, not wearing your watch, and wished you
could ask DataCAD to tell you the time? Or have you wanted
to automatically place the current time and/or date on your
drawing? In either case, you probably conduded that Data
CAD simply can't tell time even though you know that your
computer can. Actually, DataCAD alii tell time, it simply has
no command on any menu for you to ask itta. This isa perfect

5"'"1. IHJ
Pllge II

exampleofwhya OCALmacroisuseful. Wecan use
DeAL to perform a task (displaying date and time)
that no standard DataCAD command will do.

DeAL contains a procedure called 'rndclock'; it
reads the PC's dock and assigns values to integer
variables. It allows us to derive the date and time
and display them to the user. As well as the
'readdock' procedure, the DATEJl.\{£ macro in~
duces two other procedures: 'streat' and 'cvintst'.

The'readclock' procedure in OCALdoes the actual
work of getting the current date and time informa*
tion from thecomputer. It stores that information in
the variables enclosed in the parentheses (hours,
minutes, etc..). Each of these is just an integer value
whichwouldlooksomethinglike: 2191993183. To
pretty it up, we use further program logic to read
and convert these numbers intoa nice text string, in
a fonn like: 2/19/1993-6:ffi PM

The wrterr proced ure will only accept a sitlgle string
or string variable for display. We must convert the
integers into strings and put the strings together to
makeonestring before weask wrterr IOdisplay that
string. This is done by combining sequences of the
cvintstprocedure,whichconvertseachintegervalue
into a string, and the streat procedure, which takes
a stringand adds it to lheendofanother string. Both
procedures are documented in the OCAL manual,
Chapter 11; look there for more information.

Iuse the8characterstring variable IInp_str overand
overas I convert each integerofthedateand time to
a sbing. I am building the 80 character string
variable OUlstras I go along and Ionly need tmp_str

as a temporary holding place for the string value of
each converted integer. I alsoadd nice punctuation
as I build the outstrvariable, because I want it 10 be
nke!y formatted for the user to read.

I throw in an IF..THEN to decide ifitis 'AM' or 'PM'
to get our feet wet with conditional logic in DCAL
I also set the valueof the 2 character sbing variable
am_or_pm appropriately; it will get added, by the
last program statement, to the sbingjust before it is
displayed to the user, using the wrterr procedure.

The only other new concept in this example is the
line: #include '/dcallincl_misc.inc' The definition
of the readclock procedure is actually extemal to
OCAL'scompiler;wetell thecompilertoincludethe
definitions that it finds in the file '_misc.inc' (in
DCAL's include file directory) to use the readclock
procedure that isdefined there. I use fonvard slashes
instead of lX)S's usual backslashes here, because
backslashes are used for another purpose in OCAL.

Summary: At its simplest, you can use OCAL 10
teach DataCAD a few smaU bicks that it wiIJ not
already do for you, like this issue's DATETL\t.E.OCX.

Likeany powerful language, DCALcando more. In
fact, there is very little you can imagine that you
would like OataCAD to do that can't be done with
a OCALmacro. However, programming DataCAD
through DeAL is different from and more complex
than simply using DataCAD. My goal in this
column is to instruct you in the basics of OCAL,
illustrated by sample macros that are \x)th instruc
tional and functional.
Bill D'Amico is tht lIu/ho, of Blockn, DC Sprint, IIlld ToudlUp.
Ht C4n be rtllchtd oPl ContpUStrvtIl/: 70033;MJ72

CONTACT PUBLICATION INFORMATION

Frank Simpson
Philip Hart

Lou
CbyRogas
Eric Smith
Mark White

M.o1Il'Iollging Editor.
Editor:

Editorial Rlrvilrw Commlll«:

Addillona1 ccpl~ ch~.ln Idd.-,. ond DlMr bUlineso conllflWllaollon.:
Ttl: (203) 298-&588; Fu: (203) 298-6401

Refereru::e Point is published quarterly by:
Cadby, Inc. 4 GriffiJ'I Rood North Windsor,cr 06095-1511

ext. 8060
cs: 73417,2373

ext. 8060

(203) 298-8888
ext. 8060
(203) 298-6404
(203) 298-0405

(8 bits, noparity, 1stop bit)

ext. 6425Lou Bodnar:
A/f..IC Marketing

Malcolm Davies:
Pusithnt, CEO

Oay Rogers:
Quality Assurance

Frank Simpson: ext. 6443 Editorial Communication: Philip Hart

Markding Publications cs: n640,3S60 ~~~E04011
Mark While: exl. 6455 (207)n~

NE/C Product Managtmmt cs: n640,3570 cs: 71563,1330

Cadkey:
Technical Support:
Tech Support FAX:

Cadkey Bulletin Board:

D<lt"CAD, V..lority, lind OCAL IIrtrtgisttrtd Ira&muubo!GuIkq, Inc. MS DOS find WindQw".rt ,tgist~ftI trrldnnllrkscfMic1'05Oft
Corpotlltion. All ather Immd rurmtSliMproduct namtS usm in this pu/llifQtion lin ttlldtmilrlcs, 'tgisltmll~Tks, or Inldt rurmesof
their mptr,iueltoldtrS. &lIM thtln pl4UIl IrlldtrrUllk symbolllllhtocOlrrmaofttwy tmtmllrkd "1I1l1t', GldJcey stlltLs lhilt it is using
IItt names only in lin tditorw fashion "lid 10 Iht btrwftl of/ht 'rltdonarl owntr, wi/h 00 inlmlion ofinfringmJtnt rflltt 11lldtmil,k.

Discussion in Reference Point ojproducts ItlllnllfilClllrtJ lty t>mdors other tlllm CRdkry, Inc. istdilorilll in nilluTtrmd does noI ronslilvlt
.lin t71dorsemet1t of/hem by OuJkcy. Inc.
8eolust Reference Point is distributed inltrnlllionil/lylwd1IIlrdlJ,.lIrtllndwfIuxuepridng prrldictsliftSllbjtd tof«lll market considerations
lind laxatioN slnldures, discussicn ojproducl pridng is gtfrmllly Ilooidtd in Ihesepages. Whtrt prictSIiTt quoted, Ihey reprl!Stnt thost ill
iffrct in Iht U.S. .lit/itt timtofpubli(Qtion. Cl Ctlpyright J993, by Gulkq, Inc:. ,A,II rights restrVtd.

S,,,",.IU,]
PlIgt J2

