Reference Point

|Volume 3, Number 2

Technical Resources for DataCAD ®

Spring, 1993

3-D Capabilities in DataCAD: An Overview

DataCAD provides a powerful set of 3-D tools that
you can use for a variety of drawing tasks. In the
formofanoverview, thisarticle describes the funda-
mental 3-D capabilities of DataCAD. It assumes
your general facility with 2-D drawing. Where
appropriate, it discusses menu selections in some
depth. Thearticle describes the processby whichan
elevationdrawingis generated froma plan drawing
utilizing the 3-D (Z) attributes of 2-D entities. It
describes basic 3-D entities and 3-D viewing con-
trols. Itillustrates a process for creatinga 3-D model
and some techniques for efficient 3-D modeling. It
explores modeling considerations for generating
hidden-line images and Velocity renderings. It
presents a discussion of system configurationissues
for running Velocity and explores the use of the
Velocity macroand the Velocity rendering software.

From Plan to Elevation

By carefully controlling the structure ofaplandraw-
ing, viewing itin the 3-D portion of DataCAD, and
saving an image of the elevation view, you can
quickly construct an elevation drawing. Figure 1
illustrates ground floor and second floor plan draw-
ings of the exterior walls of a building:

-t

Second Floor

Figure 1

This example shows the two plans, drawn in four
separate layers, “on top of” each other. Two layers
are used for the walls, one for each floor. The door
and windowsare drawn in their own layers, one for
each floor; the door and windows are cut into the
walls of the appropriate floors with the LYRSRCH
toggleon. Inconstructing the ground floor walls, the
Z Bask has been set to 0, Z HEIcHt to 8'-0'".

Ground Floor

The door and windows of the ground floor plan are
drawn with Z BAse and Z HEIGHT settings (Z,z) at 0
and 8'-0"and their SiLLand HEAD HEIGHT settingsare
controlled in the DOORSWNG and WINDOWS menus.
Similarly, the second floor plan is constructed with
Z BAsE set to 8'0" and Z HEIGHT set to 16'-0". The
windows cut into the second floor walls are drawn
with Z settings left at 8'0" and 16"-0".

The SiLL HEIGHT and HEAD HEIGHT settings in the
WINDows menu are set to values relative to the cur-
rently set Z BAse. Thus, when the Z BAsE is set to 8'-
0" and a window is drawn with a SiLL HEIGHT of 3'-
4" and a HEAD HEIGHT of 6'-8", the window is drawn
with absolute Z values of 11'-4" and 14'-8".

Since careful control of these settings isimportant to
the success of the operation, it is critical that you
understand where you are located in Z space atany
moment. For this reason, itis highly recommended
that you keep the display of Z information on at all
times (SETTINGS, SHOW Z).

With all four of the wall and door/window layers
turned on and a fifth, empty, layer active, you enter
the 3-D ViEws menu (V). When you select FRNTELEV
from the ELEVTION menu, a front elevation of the
drawingisdisplayed. Walls, windows, and thedoor
are all displayed in their correct orientation [it may
be necessary to invoke WINDOWIN (/), EXTENTs (F1)
to display the full elevation].

A 3-D extrusion of 2-D elements (sometimes re-
ferred toas2}4D)comprisesthedisplayed elevation.
Since these elements are wire-frame in nature, hav-
ing no surface characteristics, hidden-line removal
on them will not produce an effective elevation
image. The simplest means of “capturing” the
elevation view is by using SAVEIMAG, restricting the
number of lines “captured” by using CL» CUBE.

With the frontelevationstilldisplayed, exitto the3D
ViEws menu and select CLiP CUBE (S7). Then you
choose NEw CuUBE (F2). The display changes to plan
view (ORTHO, in the parlance of the 3-D Views
menu). You establish Z-MIN (F4) and Z-Max (F5)
settings for the CLip CUBE describing a range to be
included in the CLIP CUBE. In this example, values of
-1'0" and 170" are used. You respond to the

continued on page 3

CONTENTS

Guidelines for Graphics Card Puchasers 2
From the Editor 2
3-D Capabilities in DataCAD: An Overview
From Plan to Elevation
Building a 3-D Model

Rendering with Velocity
DCAL Workshop 1

== R

Guidelines for Graphics Card Purchasers

Many DataCAD users are currently considering the
purchase of a new graphics card, either as a part of
a new system or as an upgrade to an existing one.
The wealth of new cards on the market is largely
driven by the proliferation of Microsoft Windows.
Many of you are faced with questions about these
cards' compatibility with DataCAD.

In considering a specific card, you should inquire
aboutthesoftwaredriverssupplied with thecard. If
the manufacturer provides a driver for DataCAD,
then the card should work properly. If they do not
supplyaDataCADdriver,you should inquireabout
VESA emulation or 8514A compatibility. You
canconfigure DataCAD toeither of these standards.

An articlein the Spring, 1992 issue of Reference Point
details the process of configuring a system for use
witha VESA-compliantgraphicscard. Basically, the
card must first be put into VESA mode through the
use of a vendor-supplied softwaredriver. You then
configure DataCAD with its own VESA driver:
either VESA256.EXE or VESA16.EXE. You should
place both the vendor-supplied VESA emulation

driver and the DataCAD VESA driver in the High
DOS memory area for optimum performance in
DataCAD. See Reference Point, Summer, 1992 fora
discussion of system optimization; the configura-
tiondetailed in thatarticle utilizes the VESA drivers.
An article in this issue shows a typical system
configuration for Velocity, using VESA drivers.

The process for utilizing a card thatis8514A compat-
ible is more straightforward. This type of card
should be register level compatible with 8514 emula-
tion and can be driven directly with the Cadkey
supplied driver: ATC8514.EXE, which should be
loaded to the High DOS memory area.

Cadkey technical support personnel are familiar
with a number of the new graphics cards on the
market and the means by which you can configure
them for DataCAD. Aninquiry tothemmight prove
helpful in the process of selecting an appropriate
graphicscard. Further, in purchasingacard thatyou
antidipate configuring with either of theseemulation
modes, your purchase should be made conditional
upon successful configuration for DataCAD.

From the Editor

AccordingtoCadkey, the recent price promotion for
DataCAD (detailed in the flyer enclosed with the
Winter, 1993 issue of Reference Point) has met with
great success. Consequently, at the request of deal-
ers, the promotion has been extended through the
end of June. Many existing users have renewed their
maintenance agreements, and DataCAD has been
adopted at many new sites. Because DCAL and
Velocity are now bundled with DataCAD, Reference
Point will be covering their use in more depth.

A new column on DCAL, written by Bill D'Amico,
beginsin this issue. Long-time DataCAD users will
be familiar with Bill's contributions to the DataCAD
community. He works for a DataCAD dealer,
Corporate Network Systems of Yarmouth, Maine,
and is the author of a number of commercial DCAL
macros: DC Sprint, Blocker, and TouchUp. Under
the guise of “Dr. DataCAD,” he was a regular
contributor to WindowlIn on DataCAD. He brings to
these pages a wealth of experience with DataCAD,
its users, and DCAL programming.

Bill's column will provide to those of you who are
unfamiliar with software programming the infor-
mation necessary to begin the process of creating
DCAL macros. The intent is to help you to under-
stand the concepts and procedures involved in this
process and to assist you in understanding the
documentation provided with the product.

The Cadkey bulletin board now has a new section
for DCAL. Source code and compiled macros that
Bill discusses in his column will be posted there,
available for downloading. Cadkey will provide
source code for routines, as well. Also, itis hoped
that other DCAL programmers might share code
and /or macros through the bulletin board.

On the subject of electronic communication, the
recent provision of modems and CompuServe mail
addresses for DataCAD personnel at Cadkey has
prompted meto finally join thatservice. The process
of initiating a membership is extremely simple (con-
tact CompuServe at 800-848-8199). The services
provided are wide ranging. My CompuServe mail
address and those for various Cadkey folks are
provided on page 12 of this issue.

I can recommend very highly the software " front-
end” packages that CompuServe has developed.
CIM(CompuServe Information Manager)isamenu-
driven DOS program that facilitates the process of
logging on to and navigating through CompuServe
services. A Windows version, WIN CIM, has re-
cently been released; you get the same basic tools as
the DOS version, but the GUl interface makesitmuch
easier to use. Depending upon your preference for
DOS or Windows, either one of these is well worth
the $49.95 price, which includes a $25 credit to the
new member's account.

Spring, 1993
Page 2

~

continued from page 1

message line prompts by identifying two points that
define the diagonal on the CLir CuBe. Toggle on
CriroN (F1). When the screen refreshes, only those
entities contained within the defined Clip Cube are
drawn; see Figure2. Note thattheextents of the Clip
Cubearedisplayed indashed lines. A portion of the
ground floor door and the second floor window
above it are seen.

Exit the CLIP CUBEmenu. You return to the3D VIEws
menu in FRONT ELEVATION view, with only those
entities contained within the CLip CUBE displayed.
You select SAVEIMAG (S5) to “capture” the elevation.
Itis saved to the active layer by choosing AcTvLYR
(F1)asthe destination (remember thata fifth,empty,
layer is active). Figure 3 illustrates the saved image
in ORTHO (plan) view, with only that layer on.

—r— co— — — oy oty

Figure 3

Note the varying window sill heights on both floors;
this was accomplished at the point of creating the
windows, inplan, by changing the SILLHGTsetting in
WiNDows. The HEADHGT setting for all windows
and the door was left at 6-8". IDENTIFY (I) and
MEASUREs (Alt+X) operations performed onthesaved
image indicate that the elevation is dimensionally
accurate and that all entities have been drawn with
a Z Bask of 0 and a Z HEIGHT of 0.

Note also the effect of having created the plan with
Cutout (F4inboth DoorSWNG and WiNDoOws) turned
on. Ateach cutoutforadoororwindow, thewallhas
been cutfrom top to bottom. Because of the way that
SAVEIMAG works, atevery occurrence of alinein this
image, there are, in fact, at least two lines, one
overlaid on top of another. The process of cleaning
this up could be time consuming and tedious. Itis
far simpler to trace (with LYRSNAP on), in another
layer, a “clean” version of this image.

Figure 4 illustrates the
“clean” version of theel-
evation base generated
from the saved image.
The amount of informa-
tion traced from the
SAVEIMAG layerisa func-
tion of the means by
which it will be later detailed. In the example
illustrated, the window sills have not been traced;
only the “rough opening” has been copied. Because
this elevation base will be used in later steps involv-
ing the use of 3-D entities, it has been drawn with
lines having a Z BAsk of 0 and a Z HEIGHT of (.

Bl

DHD

Figure 4

One of the more tedious operations in the develop-
ment of an elevation drawing is the construction of
accurate windows, particularly double-hung win-
dows with divided lites. John Hitch has written a
DCAL macro, DHW40, that provides parametric
controls to facilitate this process.

[]
L

T

Figure 5

Figure 5 illustrates the elevation base drawing after
youhaveadded 2-Dwindowsto it by using DHW40.
Each window has been drawn with differing menu
settings to illustrate the range of settings available.
Again, these windows have been drawn on their
own layer to maintain the integrity of the elevation
base for later 3-D modeling procedures.

To use the macro, you define X and Y sash dimen-
sions, select either Casement or Double Hung as the
window type, and specify the number of lites in
terms of Xand Y divisions (options change depend-
ing upon window type selected). You can set
dimensions for: casing, backband, sill, top rail, meet-
ing rail (double hung only), bottomrail. You can set
the color in which the window is drawn. You can
specify Subsill and Lintel types (including “none”)
and set their sizes. Optionally, you can place de-
scriptive text(notshown)with eachwindow; menus
allow you to control text size, color and aspect.

DHW40

John Hitch
Hitch & Associates
3309 Childers St.
Raleigh, NC 27612
(919) 782-4373

Spring, 1993
Page 3

l/

Building a 3-D Model

Just as making an architectural model is different
from drawing on paper, the construction of a 3-D
model in DataCAD is a different process than that
fordrawing in2-D. Though DataCAD's2-Dentities
have3-D properties (i.e.a Zcomponent), they donot
have planar attributes. Therefore, the usefulness of
2-D entities in 3-D modeling is limited. Ultimately,
the “output” from a 3-D model is either an image
generated by the hidden-line process or a rendered
Velocity image. While the hidden-line routine can
process 2-D entities, its results are far more satisfac-
tory when it operates on true 3-D entities. Velocity
requires 3-D entities for its operation.

A wide range of tools for the creation of a 3-D model
are available in the 3-D portion of DataCAD. They
include threebasic types:3-D view controls, tools for
creating 3-D entities, and 3-D editing tools. All of
these are well documented in the DataCAD manual
and will not be dwelt upon here. Rather, this article
presents a simple method for the creation of a 3-D
model. It demonstrates the use of three basic 3-D
entity types: 3-D lines, polygons, and slabs. The
method also illustrates the use of some basic 3-D
view controlsand some of the more commonly used
3-D editing commands.

To begin modeling in 3-D, you use the previously
drawn elevation base (Figure 4) as a guide for
creating a 3-D slab, which will form the wall. Before
creating the slab, though, you should make a couple
of changes to the 2-D base drawing.

NN
ara

c D
Figure 6

Figure 6 shows the modified elevation base draw-
ing. You create a new line (C-D) by copying the
original base line (A-B) some distance (2'-0" in this
example) and then trim the vertical end lines to this
new line. You determine the distance to copy based
on the grade condition around the building which
you are modeling. Since very few buildings sit on
absolutely flat sites, and even then, the elevation of

thefirstfloor will beabove grade, youwant toextend
the walls of the model below grade, which will be
modeled separately in a later step.

Another thing that you may want to do at this point
is to make careful note of the critical dimensions of
the window penetrations that you will be creating.

| LU

14'-8°
-4

10'-0"

]
L =2

o |<t2-0

-

Figure 7
Figure 7 illustrates the dimensions which will be
needed for later steps; it corresponds to the Z infor-
mation that you will set in the AEC_Model macro
when creating windows and doors.

Next, inanew, empty layer, create the wall. Firstset
(Z,z) the ZBast to-1-0"and the ZHEIGHT to 0. Then,
enter the 3-D ENTITY menu and select SLAB. The type
of slab that you draw will be rectangular, drawn
from Z -1'0" to Z 0. Select REcTNGLE (F3) from the
StaB menu and Bas/HcT (F3) from the next menu.
Make sure that the currently set Z Base is-1'-0" and
the Z Height is 0.

Atthe prompt:"Enter first pointofrectangularslab,”
snap (LYR snap should be on) to a corner pointon the
2-D base drawing (point C in Figure 6). At the
prompt: "Enter second point of rectangular slab,"
snap to pointE, Figure6. Repeat the process foreach
of the windows and the door; snapping to points F
and G for one of the windows, for instance.

Next, the window slabs and the door slabneed tobe
processed as voIDs in the wall slab. To do so, in the

B
SLAB menu, select VoiDs (F5). At the prompt: "Select

master polygon or slab to process voids," pick the
wallslab by clicking onitwith theleft mousebutton.
The slab will be displayed in light grey dashed lines.
With Area (F3) toggled as the selection method, at
the prompts: "Select first corner of area to make into
avoid"and "Select second point of area to make into
avoid," draw an area box around the window and
door slabs. They will all be displayed in light grey,
dashed lines. Make sure that ADDVo (F8) is
toggled on and exit the menu. An IDENTIFY per-

Spring, 1993
Page 4

formed on theslab will indicate thatthereisoneslab
containing ten voids.

Next, you need to draw a 3-D Lineat Z O on the face
of theslab, indicating on the outside of the model the
firstfloor grade elevation. Todo so, you enter the 3-
D Line menu (F1) from 3-D ENTITY, toggle Z-HGHT
(F4) to indicate that both ends of the line will be
located at the currently set Z Height (0). Draw the 3-
D Line by snapping to points on the 2-D base
drawing (A and B, Figure 6). For purposes of clarity
in later steps, you should make the color of this line
different from the color of the slab or a different line
type;itisillustrated in thisexampleas a dashed line.

Next, Rotate theslabinto position, using the ROTATE
menu in the 3-D section of DataCAD. In this
example, the slab is rotated 90° about the X axis to
bring it into position. Figure 8 illustrates this; it
shows a hidden-line image of the slab, with voids,
rotated up from the2-D base drawing (at Z0,0). The
center point about which the rotation is performed
is selected by snapping to either end
ofthe3-D"base"line. 3-DRotate
defaultstoa Z locationof 0,
which is appropriate
forthisexample.

The Right Hand Rule governs 3-D ROTATE (and 2-
D RoTATE, as well). This is an important concept to
understand. Imagine that you are holding a pencil
in the palm of your right hand with your fingers
wrapped around it. The point of the pencil isaimed
down, toward theheel of yourhand and your thumb
is aimed up the shaft, toward the eraser. With the
pointof the pencil at the "center of rotation" and the
axis of the pencil tilted to the "axis of rotation," rotate
the pencil by moving your thumbtoward theknuck-
les of your hand. This is rotation in a positive
direction for whatever axis you are representing. In
the example illustrated here, you can see that the
rotation selected is +90° along the X axis.

Why not use Vertical Slabs for the wall and the
voids, setting the Z Baseand Z Heightasappropriate
and avoid the necessity of rotating horizontal slabs
into place? Thereare tworeasons: First, the horizon-
tal technique allows you to trace from a developed
elevation created in 2-D. 2-D editing tools (notably
CLeaNup) provide to you theability todraw complex
elements, like the exact location of a roof pitch, and
toaccurately place window penetrations. You may
first work out complex elevations in 2-D and then
trace that work in another layer with 3-D entities.

Second, accurate processing of voids is dependent
upon the coordination of void slabs with the master
slab. DataCAD's rule is that void and master slabs
must be coplanar (in a horizontal configuration, all
of theslabs musthave thesame Z Baseand Z Height)
and all of the slabs must have their reference faces in
the same plane. When drawing a wall with voids
using vertical slabs, it can prove to be difficult to
coordinate these two important factors. Especially
if you are new to 3-D modeling in Data-
CAD, itis recommended that you
use the methods described
above as you develop
your modeling
skills.

Figure 9 illustrates the
model after the other three
V7 walls, with their window voids,
havebeen created. Note thatyou draw theend walls
(atthe gable ends) with horizontal slabs, rather than
with rectangular slabs so that they slope with the
roof pitch (a slab may be comprised of as many as 36
vertices). Inall other respects, you draw this type of
wall slab in the same manner as described above.

Spring, 1993
Page 5

-

Figure 10

TouchUp
Bill D*'Amico
Corporate Network
Systems
P.O. Box 965
30A Rte. 1 Suite 1
Yarmouth, ME 04096

(207) 846-0772

Figure 9 also illustrates a problem that commonly
occurs with 3-D models; because the wall slabs
overlap at the corners, the hidden-line process has
drawn lines from the thickness of the slabs on the
face of the intersecting slabs. Cleaning these up can
be tedious. There is a way to avoid the problem, at
the cost of a minor inaccuracy in the model.

Once you get the model to the point illustrated in
Figure 9 (i.e. all of the wall slabs are properly
constructed), move each of the slabs (and the 3-D
Lines associated with each of them) 1/32" away
from the center of the model as illustrated in Figure
10. You use 1/32" as it is the smallest distance that
you may specify in DataCAD. In a rectangular
model, the footprinthas grown1/16" inthe Xand Y
directions as a result.

J

Figure11showsthecor-
ner of the model after
the move has been per-
formed and a hidden-
line has been run on it.
Note that the slab end
lines at the corner do not
overlayoneanotherand
will plotatsome (small)
distanceaway fromone
another. Thismay serve
a positive purpose, as
the corner indication is
heavied up a bit.
Hatchinga3-D surface may be accomplished with
a little bit of work. Starting with an empty layer
activein OrRTHO(plan) view, you turnon the2-Dbase
elevationlayer. Usingitasabase, inthe(2-D) HATCH
menu you create hatch lines in the active layer, with
Z Bast and Z HEIGHT set to 0. You use 2-D editing
controls to adjust the hatching until the elevation is
correctly hatched.

Then, with only the hatch lines layer turned on, you
enter the 3-D portion of DataCAD and select Ex-
PLODE (F9) from the initial 3-D menu. Make sure that
the TOLINEs (F8) option is the one toggled on, and
selectall of the hatch lines. All of the hatching is now
converted to 3-D lines. You can then rotate the
hatching into position about the appropriate axis
using the same center point as you used to rotate its
associated wall slab. Figure 12 illustrates the result-
ing “hatched” slab with voids.

Note that TouchUp, a third-party macro, incorpo-
rates parametric tools that perform a similar func-
tion; see theSummer, 1992 issue fora morecomplete
description of the use of this macro.

Figure 11

Using AEC_Model:
Next, you use the
7z AEC_Model macro to
Z construct window and
/,/ % door elementsin the3-D
model. As in earlier
steps, you will find that
it is generally easier to
work in plan (ORTHO)
view to create elements
in the model and to then
verify the results by
viewing in a PARALLEL,
OBLIQUE, or PERSPECTIVE
view. To begin, work
witha new, empty layer
as the active one. Turn

on the layer containing
the wall slab to which
you will beadding doorsor windowsand, ifyouare
not already there, set your 3-D View to OrTHO. In
both the Doorand Window sectionsof AEC_Model,
the first thing that you tell the macro is whether you
will be creating entities in PLAN or ELEVATION view;
you should select PLAN.

The menu settings for the macro and the elements
thatthey controlare well documented inthemanual.
Working with PLaN entry, you will need toknow the
SuL and HEAD HEIGHT for each door and window
that you construct; this is why you earlier noted
thesedimensions, asillustrated in Figure7. With this
information at hand, you need only snap to three
points at the appropriate void to indicate the limits
of the door or window, and the macro creates it.

You might find that an efficient means of using the
macro is to utilize the FORM option to setparameters,
then place a door or window, and check the results
by viewing in a 3-D projection. You can erase the
last-placed construction (<), correct the parameters
selected by either entering the appropriate menu or
by opening the FOrRM again, and re-place the door or
window. Once you have established settings that
you will utilize over again, you can save them to file
so that they can be loaded to the macro easily.

Use Rooflt to construct a roof for the model. The
use of this macro is detailed in the Summer, 1992
issue of Reference Point.

Grade elements around the model can be con-
structed in a variety of ways. Mostsimply, INCLINED
PoLycons provide a means of creating pathways
and sloping grade conditions at the edge of the
building, They serve to mask the portion of the
model that extends below grade.

Spring, 1993
Page6

Figure 13

Figures 13and 14 illustrate perspective views of the
model constructed in the previous steps.

3-D Views are an important component in the
processof creatinga3-Dmodel. You should experi-
ment with the controls that are available and read
the sections in the manual thatcover them. A couple
of important notes:

While the “globe” that is displayed when PARALLEL
is selected can be very useful in establishing a view
for checking the accuracy of modelled elements, it
distorts the height of the model (ELEVATION viewsare
a sub-set of PARALLEL which do not distort the Z
component, however). You should use OBLIQUE
views to generate axonometrics of your model, as Z
values remain “true.”

The Save VIEw function accesses the 3-D GoToViEw
function, which is similar to the 2-D GoToVEw
menu. [tcansave up to 999 views, each of which can
havea (different) CLir CUBEassociated withit. Saved
3-Dviewsare useful in the process of constructing a
model and in processing hidden-lines; they are
essential to the process of rendering with Velocity.

The Cur CuUBE can be used to limit the amount of
information displayed to the screen at any given
time. It is useful for limiting the amount of visual
clutter that you have to deal with while modeling.

The HIDE function, however, does not su pportCLp
Cust. The only imaging function that supportsitis
SAVIMAG, as described earlier. Two importantnotes
about HDE: Before running a HIDE, make sure that
SAVIMAG (F3) is turned on. There is nothing worse
than tying up your computer foranextended period

Figure 14

of time whileit processes an image, only to find that
you cannot save that work. Second, toggle on
CrorIMAG (S2) any time that lines extend beyond the
drawing window in a perspective view. When
CrorlmMacisoff, you may beleft with lots of lines that
need to be erased or trimmed in the final image.

Use AutoHide in ViewMaster tobatch processa
series of hidden-line images overnight. You can
select the saved 3-D VIEws that you wish to process
and save the images to layers within the active
drawing fileor toexternal layer files. Whenyousave
to layer files, make sure that when you specify the
PATH to which they aresent, you include a backslash
at the end of the path name: C:\MTEC\LYR\ If the
path name does not include the final backslash, the
layer files written by the AUTOHIDE process will
overwrite one another, and, in the end, you will be
left with only the last one processed.

Manage the drawing file carefully. From the
material presented here, you can see that 3-D mod-
eling involves the construction of many discreet
components. You should organize these compo-
nentsin separate layers, grouped by each face of the
model. In the example illustrated here, each face of
thebuilding hasseparatelayers for: the wall slab, the
window and door assemblies, and the hatching. A
(thirteenth) layer contains the roof and a separate
(fourteenth) one is used for the site elements.

Because Hidden-line processing time and Velocity
rendering time are largely a function of the total
number of entities to be processed, you should be
able to turn off layers containing elements that are
not visible in the view to be processed.

Spring, 1993
Page 7

Rendering with Velocity

When you produce a Velocity rendering, there are
three basic steps that you have to go through:

¢ constructing a model in DataCAD

* translating the data that describes the model
and its associated views to a format that
Velocity can read

* processing that data in Velocity

The components of the model on which Velocity can
operate are 3-D entities; it will not recognize 2-D
entities. Youbuild a model for Velocity rendering in
the manner described inearlier sections of thisissue.

VELOCITY.DCX,a DCAL macronormally installed to
thec:\MTEC\DCx directory, isused toaccomplish the
conversion. You accessit by selecting VELocITY from
the MACROS menu. You receivea promptforaname
for thefiletobegenerated, and youhavea NEWPATH
option. Normally, the file will be written to
C:\VELOCITY\DRN, a subdirectory that is created by
the INSTALL routine for Velocity. While the macrois
running, a message appears: “Writing rendering file
C:\ VELOCITY \DRN \ FILENAME.DRN."”

Note that the macro writes to the .DRN file only those
layers that are turned on at the point of executing the
macro. Itwrites to the file all 3-D GoToViEw saved
views. However, Velocity does not support layer
switching by the views; for views of the model that
requiredifferentcombinationsof layers tobe turned
on, you must create separate .DRN files.

After running the macro, exit DataCAD and enter
Velocity. For optimal performance in Velocity, you
should cold bootyour computerinasystemconfigu-
ration different from the one used for DataCAD.

Configuring for Velocity

Articles in the Winter and Summer, 1992 issues of
Reference Point discuss system requirements for Data-
CAD. You should refer to them for a detailed
examination of how DataCAD works and how you
should configure your system to maximize its per-
formance. Similarly, Velocity has specialized re-
quirements for its running. You need to create
versions of CONFIG.SYS and AUTOEXEC.BAT that are
particular to running Velocity. The following are
typical versions of CONFIG.sys and AUTOEXEC.BAT for
Velocity using MS DOS 5.0 drivers:

Config.sys
DEVICE=C:ADOS\HIMEM.SYS
DOS=HIGH,UMB
DEVICE=C:\DOS\EMM386.EXE 6960 RAM
FILES=30
BUFFERS=15
STACKS=0,0

Autoexec.bat

PATH C;C:\DOS;CACOMFILES

PROMPT PG

LH CASTAR\UTIL\VMODE.COM VESA

LH CAMTEC\DRWV\VESA256.EXE

SET DC_GDT=VESA256,60,3,0,0,!

CD\WELOCITY

VELOCITY
The first line in CONFIG.SYs installs HIMEM.sYs, DOS
5.0'sextended memory manager. In the second line,
Dos=HIGH loadsa large portion of the DOS operating
system to thehigh DOS memory area (between 640k
and 1024k). The UMB statement enables access to
upper memory blocks. The third line installs
EMM386.ExE, which provides access to high DOS
memory and configures 6960k of extended memory
as expanded memory. The FILES, BUFFERS, and STACKS
lines establish parameters for DOS's execution.

This example isfora system configured with 8 megs
of physical RAM. The number that you enter on the
EMM386.EXE line will depend upon the amount of
RAM installed on yoursystem. The goal for Velocity
is to configure as much RAM as possible as
expanded memory. A RAM disk provides no
speed enhancementto Velocity. A disk cache would
improve some aspects of its performance, but it
would do so at the expense of the amount of ex-
panded memory directly available to Velocity, a
much more critical factor in its overall performance.

In AUTOEXEC.BAT, note that the Velocity directory
(normally c:\VELOCITY) is not included in the path
statement. As in the examples presented in the
DataCAD configuration articles, the illustrated sys-
tem usesa Diamond SpeedStar graphics card, which
is driven in DataCAD and Velocity with Cadkey's
VESA driver: Vesa256.ExE. As with the DataCAD
configuration, the card must first be put into VESA
mode; this is accomplished with Diamond's driver:
VMODE.COM; it is installed to the high DOS memory
area by including the LH (load high) statement.

NextCadkey's VESA driver isinstalled, again to the
high DOS memory area. For Velocity, you can use
the same graphicsdriver that you use for DataCAD
if it is @ 256 color driver. The SET DC_cDT= line
establishes a DOS environment variable thatis read
by Velocity to set the display resolution. The docu-
mentation for Velocity includes specific instructions
foreach of the available graphics drivers. Consultit
for details about you own graphics card.

See the Fall, 199Z issue of Reference Point for two
batch files that will help you save different versions
of CONFIG.SYS and AUTOEXEC.BAT, swap them into the
root directory, and reboot your system.

Spring, 1993
Page 8

Running Velocity

Once you have established a system configuration
for Velocity and can run the program, it is strongly
recommended that you follow the steps outlined in
the third section of the Velocity documentation, A
Quick Tour. This will provide to you an overview of
the modeling and rendering process. You will
quickly see that, of the steps involved in running
Velocity, most are straightforward. Two of the
steps, though, are relatively complex: assigning sur-
faceattributes and spedifying theimage format. The
following sections discuss them.

Assigning surface attributes

In the main menu of Velocity, the ATTRIBUTE ASSIGN-
MENT option allows you to designate surface at-
tributes for entities in the model that you have
selected for rendering. The way youaccomplish this
isby assigning rendering attributesona (DataCAD)
colorby color basis. F2 (OrT1ioNs) opensa lower level
menu which allows you a number of controls over
the assignment process.

If, forinstance, you wantall blueentities in all layers
to be rendered as MARBLE, you may assign this
attribute globally by selecting ALL LAYERs. If you
wantblueentitieson one layer to be MARBLEand blue
entities on another layer to be TIN, you may enter
eachof the layersseparately and assign the values to
blue entities in each layeraccording to your require-
ments. A DataCAD model can include as many as
1,000 layers, and each layer can contain entities
drawn in as many as 15 colors. Hence, in Velocity
you can specify attributes for as many as 15,000
discreet entity identifiers.

You quickly understand the need to manage the
original DataCAD modelin amanner that facilitates
attribute assignment in Velocity. The more consis-
tently that you use the same color to draw entities of
the same ultimate material designation, the less
work you will have to do in Velocity. For example,
youmight use Red forall slabs that will be rendered
as BrICK and limit the location of those slabs to only
a few layers. Then, finding them in Velocity and
assigning BRICK to Red entities will be simplified.
Justas color assignment and the correlation of color
to pen assignment is an important office standard
for 2-D production drawings, standard layer /color
assignment for frequently used materials in 3-D
models serves to facilitate their rendering.

Cadkey's 3-D macros, AEC_Model, Rooflt, and 3-
DStairs, all provide the ability to set the color for
components of theassemblies thatthey model. They
alsoallow you tosave settings tofile. For frequently
used window types, you can establish a color stan-

dard for the window components, saving the set-
tings to a file created from within AEC_Model.
Similarly, in Velocity, you can create a correspond-
ing grouping of attribute assignments, keyed to the
color standard, and save it to file. Once you have
saved this file, you can load it into Velocity to
establish the attribute assignments for the model on
which you are working. This provides to you some
considerable time savings in the rendering process.

Image format

You can specify the output of Velocity's rendering
process to a number of file formats. Typically, you
can produce a .2rN file and display it at screen
resolution. You can display any .2RN image to screen
attheresolution that you specified in thesetDc_cpT=
line of AUTOEXEC.BAT. For many purposes, this is an
adequate means of presentation.

You may wish, however, to export a true color (16.7
million colors) version of the rendering to a file
format that can be read by a film recorder. You
should refer to the Velocity documentation for infor-
mation about converting .6RrN files to .scD format.

Another means of processing Velocity output is to
exporta rendering file to “paint” software, in which
you can touch-up and enhance the rendered Veloc-
ity image. Donot confuse this with the PAINToption
under IMAGE RESOLUTION in the VIEW SPECIFICATION
menu, in which you generate a file that can be read
by the Hewlett-Packard Paint]et printer.

Mostpaint programstoday rununderMS Windows
and supporta variety of file formats. Unfortunately,
6RN files cannot be directly read by these packages.
To export a Velocity rendering to a paint package,
you need to converta .6rn file to a format that can be
read by other software.

One way to do this is to use VEL2TCA.EXE, a conver-
sionutility provided with Velocity, toconverta .6RN
file to .TcA (Targa) format (see the manual pp. 5-19
to 5-21). Many paint packages can directly read
Targafiles. If your paint software doesnotread .TcA
files,donotdespair; thereareanumberof shareware
conversion utilities that can convert graphics files to
a number of commonly used formats.

Cheapware lists a couple of these utilities. It also
hasanumberof other items which canbevery useful
to you for 3-D modeling and rendering in Velocity.
3-D symbols for modeling in DataCAD are avail-
able. Alternate Velocity brick texture filesand “sky”
backgroundsare listed, asare a couple of 3-D “color
wheels” which enhance the process of color selec-
tion in Velocity.

Upgraded versions of two
conversion files are avail-
able on the Cadkey Bulle-
tin Board. Look for:
VEL2TGA.EXE
TGA2VEL.EXE

CHEAPWARE

Evan Shu
Shu Associates
10 Thacher St.

Suite 114

Boston, MA 02113
(617) 367-9622

Spring, 1993
Page 9

Whatis DCAL? DCAL (DataCAD Applications Language)
isa programming language whichallows you to write ‘macros’
which users can accessand run from within DataCAD. DCAL
macros can be programmed to perform nearly any drawing
manipulation task and greatly extend DataCAD's capabilities.

Who Can Use DCAL? Programming DataCAD effectively
with DCAL requires both a thorough knowledge of DataCAD
fromtheuser’s pointofview, as wellasatleasta beginner’slevel
of programming principles using a language suchas BASIC or,
evenbetter, PASCAL. DCAL programming is very PASCAL-
like in structure and flow, so elementary concepts such as
functions, procedures, and variable types need to be firmly
grasped in order to write even the simplest of DCAL macros.

It is not the case that anyone who uses DataCAD - even a
DataCAD‘guru’-canwrite DCAL macros. Itisalso not thecase
that any programmer can write good, easy-to-use DCAL
macros. DCAL isa powerful tool; itisalso a dangerous one. It
is powerful because it can directly read and write data in a
DataCAD drawingfile; itis dangerous becausea DCAL macro
cancorrupta DataCADdrawing fileifitisnotcarefully written.
If I haven’t scared you off yet, let’s get to it...

Setting Up to Program in DCAL You mustdoa few things
before you can program in DCAL. First, you must install the
DCAL language programs themselves from the diskssupplied
by Cadkey. After that, I recommend that you include the
directory into which you installed DCAL (usually C:\DCAL)
in the PATH statement of AUTOEXEC.BAT. You can then write and
edit programs in any directory, and compile and link them by
just typing the DCAL compile and link commands. This way
you can more easily separate your work into a number of
directories. To program in DCAL, you must be able to edita
textfile. Use DOS5.0's EDIT, or use your word processor toedit
and save your program source files as plain ascr text files.

Our First Example: ‘Hello World” Many language tutorial
manuals startby showing the simplest programanyonewould
want to write, typically, the famous ‘Hello World’ example.
The following macro displays the words "Hello World’ on the
message line below DataCAD's drawing window:

) This tiny DCAL program shows

EROGHAN he; the basic structure of a program
BEGIN file. The program name is ‘hello’;
wrterr('Hello World'); | Pprogram execution begins at the
END hello word ‘BEGIN’ and ends at the
) word ‘END’. The only actual pro-
HELLO.DCS gramcodeistheline ‘wrterr('Hello

World’);". The wrterr statement
invokes the procedure ‘wrterr’, a built-in DCAL subprogram
thattakes thestring thatyou giveitin the parenthesesand single
quotation marks("HelloWorld")and displaysitonwhat DCAL
calls theerror line of the DataCAD display. Note: program code
lines must always end in a semicolon.

To write this program, open a new file with a text editor, type
in the four command lines listed, then save the file with a .Dcs
(for DCAL Source) extension. Call it HELLO.DCS. You must

B DCAL WORKSHOP

process a source file through two steps to convert it to an
executable DCAL macro file (.0cx) for DataCAD to run. The
steps are: compiling and linking. Our first step, compiling
HELLO.DCS, is accomplished from the DOS command line by
typing: DCC HELLO DCC is the DCAL Compiler. If DCC
reportsnoerrorsin thecompilestep, itcreates the file: HELLO.DCO.
Then, HELLO.DCO is linked to form HELLO.DCX by typing:
DCL HELLO;

DCL is the DCAL Linker. Note that you must include the
semicolon. DCLcan link many source files into one large macro
file, so the semicolon on the command line tells the linker that
this is the last file (and in this simple case the only one) that is
needed to build the DCX macro executable file.

If DCL does not report any link errors, you now have a
HELLO.DCX file that can be run from DataCAD’s MACROS menu.
Just copy HELLO.DCX to your ‘macros’ subdirectory (usually
c:\MTEC\DCX), run DataCAD, and pick HELLO from the MACROs
menu. ‘Hello World’ displays on the ‘error line’ in the prompt
area at the bottom of the screen.

| VariablesandVariableTypes:
PROGRAM examplet; | 1o pEiio macro is so simple
VAR thatitreally showsusnothingof
a : integer; the elementary concepts of
b: integer; DCAL: procedures, functions,
c : integer; and variable types. Let us now
d: integer, consider the small macro pro-
@ : leger, gram called ExaMPLE], whichin-
f :'r;a;;‘ troduces variable types.
ﬁ : reals The “VAR’ section of EXAMPLE]
s : string(80); declares the variables that the
m : boolean; program is going to use before
BEGIN they.are ever used. This i? a
requirement of DCAL which
a:=10; some other languages, notably
b:=3; BASIC, do not have. Any and
ci=a+b; all variables (or procedures or
- = / E functions) that will be used ina
fe_._— 130 0_‘ program must have their ‘type’
s 30: declared in a “'VAR’ section be-
ﬁ s Y g fore the program’s ‘BEGIN’
s := ‘Hello World" statement. lDe_clannga variable
= i’ means mldtcat:lng wh_al type pf
' information that variable will
END example1. hold. Variable names can be up

to 20 characters in length, and
must start with a letter (a-z).

EXAMPLE1.DCS

Note: Upperand lower caseisignored inall DCAL statements,
so you can use them interchangeably. I prefer to keep DCAL
statements that define program sections and program flow,
such as PROGRAM, IF, THEN, BEGIN, END, PROCEDURE,
etc.asall capitals, asitmakes programseasier toread. Program
sections may be separated by extra carriage returns or tabbed
indents to make those areas easier to find. DCAL ignores this
white space when the program is compiled.

Spring, 1993
Page 10

o~

.

The ExaMPLE1 macro shows how variables are declared and
used in DCAL. Variables a through e are declared as integers;
they can be assigned any value from -32767 to 32767, but only
integer values (no decimal point). We assign to the variable a
thevalueof 10and to b the value of 3 with the first two program
statements. Then we illustrate addition, multiplication, and
division of integers with the next three. “="is called the
assignment operator; itis used to assign the value of the expres-
sion to its right to the variable on its left. So c will take on the
value 13, and d will be 30.

The value of e, however, will be 3, not 3.3333333 as you would
expect if you did 10 / 3 on your calculator. This is because we
declared that e can only hold an integer value,so 10 / 3willonly
yield the integer portion of the result, which is, of course, 3. So
ewillhaveavalueof3. Doing thesamedivisionoperation using
the variables f, g, and h will result in h’s value being set to
3.33333333. Why? Becausef, g, and hhave beendeclared asreal
variables, which can have decimal points. i.e. fractional values.

Variable s is declared as a string variable that can be up to 80
characters long. We assign s equal to the value "Hello World'.
Integers, reals, and strings are three of the more commonly
used types, asisa ‘boolean’, which can have the value of ‘true’
or ‘false’. The EXAMPLE] macro assigns the value of true to the
variable m. Chapter 8 - “DCAL Built In Types' in the DCAL
manual goes into much more detail about these and other
variable types. You can also define your own typesina TYPE
section of your program, but let's not get ahead of ourselves.

DataCAD also has many variables already declared and built
into DCAL, all of which have to do with various drawing
settings. These are outlined in Chapter 9 - ‘DCAL Built In
Variables’inthe DCAL manual. AstheuserworksinDataCAD
and changes various drawing settings, the values of these built-
in variables are what are actually being changed.

Variable typesare one of the comerstones ofany programming
language. Familiarize yourself with DCAL’s built in types by
looking over Chapter 8 in the DCAL manual, then the built in
variables in Chapter 9. If you are very familiar with DataCAD
as a user, you should recognize most or all of the built in
variables in Chapter 9.

Procedures and Functions: Since good programming prac-
tice dictates that any program of any significant size must be
broken down into subprograms that interact with one another,
aserious programming language provides the ability to do so.
DCAL has two mechanisms for creating such subprograms -
calling them, like PASCAL, ‘procedures” and ‘functions’.

A procedure is like a little program all itself. Like the builtin
DCAL ‘wrterr” procedure used in the HELLO macro, you can
write procedures that can be called upon to perform a specific
task and /or produce a result based on data that is passed toiit.
In the HELLO macro, we knew that we wanted to display a
message on the screen, and we knew what the message was.
Since wrterr knows how to do that, we simply ‘called’ the
wrterr procedure and gave it the message string that we
wanted the user tosee. A functionisidentical toa procedure
except that functions refurn a value of a particular type. Hence,
you must have a variable ready to receive the result of a
function, for example:

r=4.0; \

s := sqgri(r);
Here rand s are both variables of type real. The variable ris
assigned the value 4.0, then the square root function is asked to
operateon the valueofr,and sisassigned that value:2.0. DCAL
has some 500 built-in procedures and functions which will do
very sophisticated things for you that you would otherwise
have to program yourself. We will get into writing our own
procedures and functions as we get further into DCAL; for
now, ournextexample willjustcalla few of DCAL’s many built
in procedures.

PROGRAM datetime;
#include ‘/dcal/inc_misc.inc’

VAR

year, month, day, hours : integer;
minutes, seconds, hundreths : integer;
tmp_str : str8;

outstr : str80;

am_or_pm : string(2);

BEGIN

readclock(year, month, day, hours, minutes, seconds, hundreths);
cvintst(month,outstr);

strcat(outstr,/');

cvintst(day,tmp_str);

strcat(outstr tmp_str);

strcat(outstr,'/');

cvintst(year,tmp_str);

strcat(outstr,tmp_str);

strcat(outstr,” —);

IF hours > 12 THEN
cvintst(hours-12,tmp_str);
am_or_pm := ‘PM’;

ELSE
cvintst(hours tmp_str);
am_or_pm := ‘AM’;

END;

strcat(outstr,tmp_str);
strcat(outstr,":");
cvintst(minutes,tmp_str);
IF minutes < 10 THEN
strcat(outstr,’0");
END:;
strcat(outstr,tmp_str);
sircat(outstr,am_or_pm);
wrterr(outstr);

END datetime.

DATETIME.DCS

‘DataCAD, what time is it?” Have you ever been working
along in DataCAD, not wearing your watch, and wished you
could ask DataCAD to tell you the time? Or have you wanted
to automatically place the current time and /or date on your
drawing? In either case, you probably concluded that Data-
CAD simply can't tell time even though you know that your
computer can. Actually, DataCAD can tell time, it simply has
no command on any menu for you to ask it to. Thisisa perfect

Spring, 1993
Page 11

exampleofwhya DCAL macrois useful. Wecanuse
DCAL to perform a task (displaying date and time)
that no standard DataCAD command will do.

DCAL contains a procedure called ‘readclock’; it
reads the PC’s clock and assigns values to integer
variables. It allows us to derive the date and time
and display them to the user. As well as the
‘readclock” procedure, the DATETIME macro intro-
duces two other procedures: ‘strcat’ and ‘cvintst’.

The ‘readclock’ procedure in DCAL does the actual
work of getting the current date and time informa-
tion from the computer. Itstores thatinformationin
the variables enclosed in the parentheses (hours,
minutes, etc..). Each of these is just an integer value
whichwould looksomethinglike: 2191993183. To
pretty it up, we use further program logic to read
and convert these numbers into anice textstring, in
a form like: 2/19/1993 —6:03 PM

The wrterr procedure will only accepta single string
or string variable for display. We must convert the
integers into strings and put the strings together to
make one string before we ask wrterr todisplay that
string. This is done by combining sequences of the
cvintstprocedure, whichconvertseach integervalue
into a string, and the strcat procedure, which takes
astringand addsitto theend of another string. Both
procedures are documented in the DCAL manual,
Chapter 11; look there for more information.

Tusethe8 character string variable tmp_stroverand
overas I converteach integer of the dateand time to
a string. I am building the 80 character string
variable outstras I go along and Ionly need tmp_str

CONTACT

Cadkey: (203) 298-8888

Technical Support: ext. 8060

Tech Support FAX: (203) 298-6404

Cadkey Bulletin Board: (203) 298-6405

(8 bits, noparity, 1stop bit)

Lou Bodnar: ext. 6425
A/E/C Marketing

Malcolm Davies: ext. 8060
President, CEO cs: 73417,2373

Clay Rogers: ext. 8060
Quality Assurance

Frank Simpson: ext. 6443
Marketing Publications cs: 72640,3560

Mark White: ext. 6455
A/E/C Product Management cs: 72640,3570

asa temporary holding place for the string value of
each converted integer. I alsoadd nice punctuation
as I build the outstr variable, because I want it to be

nicely formatted for the user to read.

Ithrow inanIF. THEN todecideifitis'AM’ or PM’
to get our feet wet with conditional logic in DCAL.
I also set the value of the 2 character string variable
am_or_pm appropriately; it will getadded, by the
last program statement, to the string just before it is
displayed to the user, using the wrterr procedure.

The only other new concept in this example is the
line: #include “/dcal/ine/_misc.in¢” The definition
of the readclock procedure is actually external to
DCAL’scompiler; wetell thecompiler toinclude the
definitions that it finds in the file _misc.inc’ (in
DCAL’s include file directory) to use the readclock
procedure thatisdefined there.Tuse forward slashes
instead of DOS’s usual backslashes here, because
backslashes are used foranother purposein DCAL.

Summary: At its simplest, you can use DCAL to
teach DataCAD a few small tricks that it will not
already do for you, like this issue's DATETIME.DCX.
Likeany powerful language, DCAL candomore. In
fact, there is very little you can imagine that you
would like DataCAD to do that can't be done with
aDCALmacro. However, programming DataCAD
through DCAL is different from and more complex
than simply using DataCAD. My goal in this
column is to instruct you in the basics of DCAL,
illustrated by sample macros that are both instruc-
tional and functional.

Bill D'Amico is the author of Blocker, DC Sprint, and TouchUp.
He can be reached on CompuServe at: 70033,3072

PUBLICATION INFORMATION

Reference Point is published quarterly by:
Cadkey, Inc. 4 Griffin Road North Windsor, CT 06095-1511

Additional copies, changes in address, and other business comumnunications:
Tel: (203) 298-8888; Fax: (203) 298-6401

Managing Editor: Frank Simpson
Editor: Philip Hmpso

Cony R
i i
Eric Smith

Mark White

Editorial Review Committee:

Editorial Communication: Philip Hart

9 High Street
Brunswick, ME 04011
(207) 729-0907

Cs: 71563,1330

an endorsement of them by Cadkey, Inc.

effect in the U.S. at the time of publication.

DataCAD, Velocity, and DCAL are registered trademarks of Cadkey, Inc. MS DOS and Windows are registered trademarks of Microsoft
Corporation. All other brand names and product names used in this publication are trademarks, registered trademarks, or trade names of
their respective holders. Rather than place a trademark symbol at the occurrence of every trademarked name, Cadkey states that it is using
the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

Discussion in Reference Point of products manufactured by vendors other than Cadkey, Inc. is editorial in nature and does not constitute

Because Reference Point is distributed internationally and hardware and software pricing practices are subject tolocal market considerations
and taxation structures, discussion of product pricing is generally avoided in these pages. Where prices are quoted, they represent those in
© Copyright 1993, by Cadkey, Inc. All rights reserved.

Spring, 1993
Page 12

RP SPRING

